Stochastic Block Economic Value Modelling

R. Manjoo-Docrat¹ Y. Bouchareb² T. Motsepa³ T. Marote¹ I. Denham-Dyson¹

Supervisors: Montaz. Ali¹

Industry Representative: Tinashe. Tholana

 1 University of the Witwatersrand 2 African institute for mathematical Sciences 3 North West University

Mathematics in Industry Study Group, 2018

Block Economic Value

Block Economic Value(BEV) = Block Revenue – Cost BEV_{ij} = $[(T_{ij} * G_{ij} * R_{ij} * P_t) - (MC_t + PC_t)]$

Problem Description

• Develop a model that accounts for the variability in the factors used to calculate BEV

Block Economic Value

$$BEV_{ij} = [(T_{ij} * G_{ij} * R_{ij} * P_t) - (MC_t + PC_t)]$$
(1)

where

- T_{ij} is the tonnage of block B_{ij} ;
- G_{ij} is the grade of block B_{ij} ;
- R_{ij} is the recovery of block B_{ij} ;
- P_t is the price of gold of the block B_{ij} ;
- MC_t is the mining cost of block B_{ij} at time t;
- PC_t is the cost of processing block B_{ij} at time t.

Fitting Distributions for Parameters

Tonnage (T_{ij}) : Does not vary much between the observations:

$$T_{ij} = \bar{t} = \frac{1}{N} \sum_{i=1}^{N} T_{ij} = 624.3$$

Recovery (R_{ij}) : Set as a constant as suggested by industry expert

$$R_{ij} = r = 0.9$$

Cost of Mining (C_t) : We model costs taking inflation into consideration

$$\frac{dC}{dt} = \delta C \implies C_t = C_0 e^{\delta t}$$

where

- $C(0) = C_0$ is the initial cost.
- δ is the continuous inflation rate.

Visual representation of the data

Grade data

Visual representation of the data

Price change

Plot of Price Data

Visual representation of the data

Price over time

Mining Costs over time

Find possible models for the data $_{\mbox{\tiny Grade}}$

Cullen and Frey graph

Parametric methods

Weibull distribution

Parametric methods

log-normal distribution

Parametric methods

A comparison

• Grade (G_{ij})

We worked with gold data of 302 391 observations. We agree with that the lognormal is the best fits the data

$$f(g) = \frac{1}{g\sigma\sqrt{2\pi}}exp\left(-\frac{(\ln g - \mu)^2}{2\sigma^2}\right)$$
(2)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

12/32

where

•
$$\mu = -2.2366549$$
 (0.001702716);
• $\sigma = 0.9363237$ (0.001203996).

Define the ratio $\frac{\Delta P}{P_t}$ where $\Delta P = P_{t'} - P_t$ and $\Delta t = t' - t$

• Expected annual increase:

$$\mu\Delta t = E\left[\frac{\Delta P}{P_t}\right] \tag{3}$$

where μ is the increase per unit time.

• Noise:

$$\sigma^2 \Delta t = Var\left(\frac{\Delta P}{P_t}\right) \tag{4}$$

where σ is the standard deviation.

• We can therefore construct a simple model.

$$\frac{\Delta P}{P_t} = \mu \Delta t + \gamma(\sigma) \tag{5}$$

Where $\gamma(\sigma)$ is the noise term.

• To generate noise, we sample from a standard normal distribution.

$$\gamma(\sigma) = \sigma \sqrt{\Delta t} \epsilon, \quad \epsilon \sim N(0, 1)$$

We must check that this satisfies the requirements of expectation and variance for our model.

$$E[\gamma] = 0$$
$$Var(\gamma) = \sigma^2 \Delta t$$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q (や
14 / 32

• So the model becomes,

$$\frac{\Delta P}{P_t} = \mu \Delta t + \epsilon \sigma \sqrt{\Delta t}$$

• Writing this as an SDE we have

$$dP_t = P_t[\mu dt + \sigma dB(t)]$$

Where B(t) is standard Brownian Motion

• We now let $z = log P_t$ and use Ito's Lemma,

$$dF_t = F'(X_t)dX_t + \frac{1}{2}F''(X_t)(dX_t)^2$$
$$dz = \frac{1}{P_t}dP_t + \frac{1}{2}\frac{-1}{P_t^2}(dP_t)^2$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や
15 / 32

• Calculating these terms we have,

$$(dP_t)^2 = \sigma^2 P_t^2 dt$$

Since $dt^2 = 0$, dtdB(t) = 0 and $dB(t)^2 = dt$. These fundamental relationships are known as quadratic variations.

• So we arrive at,

$$dz = \frac{1}{P_t} (P_t[\mu dt + \sigma dB(t)]) - \frac{1}{2P_t^2} \sigma^2 P_t^2 dt$$
$$dz = \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dB(t)$$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q (や 16 / 32 Integrating gives:

$$lnP_{t'} - lnP_t = \left(\mu - \frac{\sigma^2}{2}\right)(t' - t) + \sigma(B(t') - B(t))$$
$$\implies ln\left(\frac{P_t}{P_0}\right) = \left(\mu - \frac{\sigma^2}{2}\right)t + \sigma\epsilon\sqrt{t}$$
$$\implies P_t = P_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma\epsilon\sqrt{t}}$$

• Volatility

Using 10 years of data sampled monthly we estimated the volatility and drift of gold.

Let P the list of all prices and ΔP their associated differences.

$$\sigma^2 = \operatorname{Mean}\left(\frac{\Delta P^2}{P^2 dt}\right)$$
$$= 0.0188871$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ - のへで

• Drift

The log-rate is required in the calculation of the drift.

$$\Delta P e^{\Delta t} = \frac{P_T}{P_0}$$

$$\implies \log \Delta P = \frac{\log(P_T) - \log(P_0)}{\Delta T}$$

$$\implies \mu = \frac{\sigma^2}{2} + \log \Delta P$$

$$= 0.13743$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

• Stochastic BEV Model

Let b_t be a random variable denoting the block economic value at time t

$$b_t = t * r * g * P_t - C_t \tag{6}$$

where

•
$$t = \frac{1}{N} \sum_{n=1}^{N} t_i$$

•
$$r = \overline{r}$$

•
$$g \sim \log \mathcal{N}(\mu, \sigma)$$

•
$$P_t = P_0 \exp\left\{\left(\mu - \frac{1}{2}\sigma^2\right) + \epsilon\sigma\right\}$$

•
$$\epsilon \sim \mathcal{N}(0, 1)$$

•
$$C_t = e^{\delta t}$$

◆□ → < 部 → < 書 → < 書 → < 書 → ○ < ○ 20 / 32

• Conditional Stochastic BEV Model

To calculate the BEV, we define the following conditional distribution:

$$f(b_t|g) = P(b_t < x|\alpha < g < \beta) \tag{7}$$

Applying Baye's Theorem

$$f(b_t|g) = \frac{P(b_t < x \cap \alpha < g < \beta)}{P(\alpha < g < \beta)}$$
(8)

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

21/32

Taking the expectation yields the Block Economic Value at a particular grade

• Conditional Probability

Suppose the mining company wishes to determine the probability that a block value will be above x dollars if the grade is between 0.5ppm and 1ppm i.e Pr(BEV > x|1 > g > 0.5).

x Dollars	Probability
1000	0.837739
2000	0.600609
3000	0.430634
4000	0.315498
5000	0.236492
6000	0.180969
7000	0.141001
8000	0.111596
9000	0.0895397
10000	0.0727107

• Conditional Expectation

This may be useful for various forms of statistical analysis but the company may want a more direct means of evaluating potential prospects.

Grade	Expected BEV
(0.1, 0.2)	3398.79
(0.2, 0.3)	5823.56
(0.3, 0.4)	8246.05
(0.4, 0.5)	10662.8
(0.5, 0.6)	13075.5
(0.6, 0.7)	15485.4

• Time averages

The time average is given by

$$\frac{1}{T} \int_0^T f(t) dt$$

- Take the time average of P(t).
- Generate several values of the now time independent P_T .
- Form a distribution over these values.
- Take the time average of C(t).
- Substitute these into the model and generate several values.

イロト イヨト イヨト ・ヨー わらの

24/32

• Plot the BEV against g

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 かへで 25 / 32

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 かんで
27 / 32

◆□ → ◆部 → ◆書 → ●書 → ○ へ (や 29 / 32

- Our model incorporates two tools parameter fitting and stock modelling.
- Incorporate kriging

• Chance, Don M. "The ABCs of Geometric Brownian Motion." Derivatives Quarterly 41 (1994).

